Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Am Chem Soc ; 144(9): 3761-3765, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1713117

ABSTRACT

The Covid-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue recently approved as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of an efficient biocatalyst for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >85 000 turnovers in less than 3 h, operates at 180 g/L substrate loading, and benefits from in situ crystallization of the N-hydroxy-cytidine product (85% yield), which can be converted to Molnupiravir by a selective 5'-acylation using Novozym 435.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cytidine Deaminase/metabolism , Cytidine/analogs & derivatives , SARS-CoV-2 , Biocatalysis , Cytidine/biosynthesis , Cytidine/metabolism , Cytidine Deaminase/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Hydroxylamines , Metabolic Engineering , Protein Engineering , Uridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL